# Motion sensors and flow measurement

A common ultrasound application is an automatic door opener, where an ultrasonic sensor detects a person's approach and opens the door. Ultrasonic sensors are also used to detect intruders; the ultrasound can cover a wide area from a single point. The flow in pipes or open channels can be measured by ultrasonic flowmeters, which measure the average velocity of flowing liquid. In rheology, an acoustic rheometer relies on the principle of ultrasound. In fluid mechanics, fluid flow can be measured using an ultrasonic flow meter. Fluid mechanics is the branch of physics that studies fluids (liquids, gases, and plasmas) and the forces on them. Fluid mechanics can be divided into fluid statics, the study of fluids at rest; fluid kinematics, the study of fluids in motion; and fluid dynamics, the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms, that is, it models matter from a macroscopic viewpoint rather than from a microscopic viewpoint. Fluid mechanics, especially fluid dynamics, is an active field of research with many unsolved or partly solved problems. Fluid mechanics can be mathematically complex. Sometimes it can best be solved by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is devoted to this approach to solving fluid mechanics problems. Also taking advantage of the highly visual nature of fluid flow is particle image velocimetry, an experimental method for visualizing and analyzing fluid flow.An ultrasonic flow meter is a type of flow meter that measures the velocity of a liquid or gas (fluid) by using the principle of ultrasound. Using ultrasonic transducers, the flow meter can measure the average velocity along the path of an emitted beam of ultrasound, by averaging the difference in measured transit time between the pulses of ultrasound propagating into and against the direction of the flow. Ultrasonic flow meters are affected by the emperature, density and viscosity of the flowing medium. They are inexpensive to use and maintain because they do not use moving parts, unlike mechanical flow meters. Rheology (pron.: /ri?l?d?i/) is the study of the flow of matter, primarily in the liquid state, but also as 'soft solids' or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.[1] It applies to substances which have a complex microstructure, such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates), as well as many foods and additives, bodily fluids (e.g., blood) and other biological materials or other materials which belong to the class of soft matter. Newtonian fluids can be characterized by a single coefficient of viscosity for a specific temperature. Although this viscosity will change with temperature, it does not change with the strain rate. Only a small group of fluids exhibit such constant viscosity, and they are known as Newtonian fluids. But for a large class of fluids, the viscosity changes with the strain rate (or relative velocity of flow) and are called non-Newtonian fluids. Rheology generally accounts for the behaviour of non-Newtonian fluids, by characterizing the minimum number of functions that are needed to relate stresses with rate of change of strains or strain rates. For example, ketchup can have its viscosity reduced by shaking (or other forms of mechanical agitation, where the relative movement of different layers in the material actually causes the reduction in viscosity) but water cannot. Ketchup is a shear thinning material, as an increase in relative velocity caused a reduction in viscosity, while some other non-Newtonian materials show the opposite behaviour: viscosity going up with relative deformation, which are called shear thickening or dilatant materials. Since Sir Isaac Newton originated the concept of viscosity, the study of liquids with strain rate dependent viscosity is also often called Non-Newtonian fluid mechanics.